Titanium alloy and titanium rod/titanium plate has high strength and low density, good mechanical properties, good toughness and corrosion resistance. In addition, titanium alloy process performance is poor, cutting difficult, in hot processing, it is very easy to absorb impurities such as hydrogen, oxygen, nitrogen and carbon. There are poor wear resistance, complex production process. Industrial production of titanium began in 1948. The needs of the development of aviation industry make[TJC STAINLESS] the titanium industry develop at an average annual growth rate of about 8%. At present, the annual output of titanium alloy processing materials in the world has reached more than 40,000 tons, nearly 30 kinds of titanium alloy. The most widely used titanium alloys are Ti-6Al-4V(TC4),Ti-5Al-2.5Sn(TA7) and industrial pure titanium (GRADE 1, GRADE 2 and GRADE 3).
Titanium alloy is mainly used to make aircraft engine compressor parts, followed by rockets, missiles and high-speed aircraft structural parts. By the mid-1960s, titanium and its alloys had been used in general industry to make electrodes for electrolysis industry, condensers for power stations, heaters for oil refining and seawater desalination, and pollution control devices. Titanium and its alloys have become a kind of corrosion resistant structural materials. In addition, it is also used to produce hydrogen storage materials and shape memory alloys. Titanium alloy is a new important [TJC STAINLESS]structural material used in aerospace industry. Its specific gravity, strength and service temperature are between aluminum and steel, but it has high specific strength and excellent seawater corrosion resistance and ultra-low temperature performance. The amount of titanium alloy in the aero-engine generally accounts for 20% to 30% of the total weight of the structure. It is mainly used in the manufacture of compressor components, such as forged titanium fans, compressor discs and blades, cast titanium compressor casing, intermediary casing, bearing housing, etc. Spacecraft mainly use titanium alloy high specific strength, corrosion resistance and low temperature performance to manufacture a variety of pressure vessels, fuel tanks, fasteners, instrument straps, frames and rocket housing. Man-made earth satellite, [TJC STAINLESS]lunar module, manned spacecraft and space shuttle also use titanium plate welding pieces.
Titanium alloy is mainly used to make aircraft engine compressor parts, followed by rockets, missiles and high-speed aircraft structural parts. By the mid-1960s, titanium and its alloys had been used in general industry to make electrodes for electrolysis industry, condensers for power stations, heaters for oil refining and seawater desalination, and pollution control devices. Titanium and its alloys have become a kind of corrosion resistant structural materials. In addition, it is also used to produce hydrogen storage materials and shape memory alloys. Titanium alloy is a new important [TJC STAINLESS]structural material used in aerospace industry. Its specific gravity, strength and service temperature are between aluminum and steel, but it has high specific strength and excellent seawater corrosion resistance and ultra-low temperature performance. The amount of titanium alloy in the aero-engine generally accounts for 20% to 30% of the total weight of the structure. It is mainly used in the manufacture of compressor components, such as forged titanium fans, compressor discs and blades, cast titanium compressor casing, intermediary casing, bearing housing, etc. Spacecraft mainly use titanium alloy high specific strength, corrosion resistance and low temperature performance to manufacture a variety of pressure vessels, fuel tanks, fasteners, instrument straps, frames and rocket housing. Man-made earth satellite, [TJC STAINLESS]lunar module, manned spacecraft and space shuttle also use titanium plate welding pieces.